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LETTER TO THE EDITOR 

On kicked systems modulated along the Thue-Morse 
sequence 

C6sar R de Oliveirat 
Universidade Federal de SHo Carlos, Departamento de Matematica, CP 676, S b  Carlos. SP, 
13560-970 Brazil 

Received 27 July 1994 

AbstraeC We give necessary conditions for fhe Fourier vansfom of fhe time evolution operator 
of kicked systems. modulated along the ThueMorse sequence. to present Dirac's delta functions. 
The case of hvo-level systems is analysed in detail and it is found-based on the trace map and 
numerical investigations-that generically its time evolution has no quasi-periodic component 

Current research on the influence of non-periodic sequences in physical systems has mainly 
focused on discrete Schrodinger operators, i.e., tight-binding models [ 1 4 .  This is justified 
by the discovery of quasi-crystals [7]. Since then a number of physicists and mathematicians 
have been interested in Schradinger operators with potentials modulated along substitution 
sequences [1-6.8], also called deterministic disorder. The main tool, for characterizing 
sequences is the Fourier spectrum [&IO], which consists of a countable set in the case 
of quasi-periodicity. A very interesting substitution sequence is the so-called Thue-Morse 
sequence, which has a singular continuous Fourier spectrum and so is not quasi-periodic. 

Recently some studies on the behaviour of quantum system driven by non-periodic 
perturbations have appeared, in particular on systems with time dependence modulated along 
the Fibonacci 11 1-13] and Thue-Morse sequences 114,151, and their dynamical behaviour 
have been related to the concepts of quantum integrabiliiy and quantum chaos. In the case 
of N-level systems driven by a quasi-periodic force generated from a Fibonacci sequence 
(recall that the Fibonacci sequence has a quasi-periodic Fourier spectrum) it has been shown 
that, generically, the dynamics is not quasi-periodic [ l l ,  121. This is in contrast to the case 
of N-level systems driven by time-periodic perturbations in which the time evolution is 
always quasi-periodic. The case of 2-level systems driven by kicks modulated along the 
Thue-Morse sequence was considered in [14]: for some parameter values the quantum 
autocorrelation measure was computed and it splits into a pure point and a pure singular 
continuous part. However, one has no control of the size of the parameter set for which 
such interesting results hold. Similar results related to the kicked harmonic oscillator were 
also found [15]. 

The purpose of the present letter is to give necessary conditions for the Fourier transform 
of the evolution operator of kicked systems modulated along the "hue-Morse sequence to 
present delta functions. Then we study in detail the case of 2-level system: by using the 
associated trace map and some numerical calculations we conclude that, in general, the 
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Fourier transform of the evolution operator has no delta functions, so that it is not quasi- 
periodic. As a corollary we see that some results of 1141 that appeared particular to the case 
considercd are, in fact, of more general flavour. 

We now look at the model. The sequence we consider is r = ( ~ ( k ) ) ,  with k E N and 
each v (k )  takes the value 0 or 1 according to the Thue-Morse substitution rule: c(0) = 10 
and ((0) = 01. r is obtained by writing words from right to left, starting with u(1) = 0 
and iterating at ~ ( 1 ) ;  e.g., e2(u(l))  = ((((0)) = ((IO) = c(l)t(O) = 0110. If W is a 
word made of the letters 0 and I, we shall denote by 'W the word obtained by exchanging 
the letters 0 and 1 in W. 

The kicked Hamiltonian we study bas the form 

m 
H ( f )  = H o + P C v ( k ) S ( t - k )  

kl 

where HO and P are operators acting in the Hilbert space 7-L. The time-evolution operator 
U(t,O),  generated by r, is discontinuous at integer times n such that v(n)  = 1, and by a 
standard argument one gets 

U(n,  0) = L'(n + 0,O + 0) = U,(,,&J,(n-~). . . U v ( ~ )  

where U0 = e - % n d  U] = e-iHue-ip. It will also be convenient to consider the time- 
evolution operator V ( t ,  0) generated by 'r, so that V ( t ,  0) is discontinuous at integer times 
n such that w(n) = 0. 

In the case of the kicked system~(1) the Fourier transform of the evolution operator 
U ( n ,  0) can be described by [ l l ]  G(u) = G,(o), where 

Set M,, = U@", 0) and ' M ,  = V(2", 0). Two basic consequences of the Thue-Morse 
substitution rule are M,+I = 'M.M, and 'Mntl = M.'M,, [14]. Making use of these 
relations it is found that 

where 

is obtained from Go(@) by exchanging the letters 0 and I .  G(w) has 6-singularities for the 
values of o such that $fl(w) E Gzn(~) /2"  has a non-zero limit $(o) as n + 00 [ I I ,  161. 
Taking the limit n --t 00 in (2) and (3) divided by 2"+' one obtains, respectively, 

$(o) = '$(o)L(o) and '$(U) =$(o)'L(o) (4) 

where we have introduced L ( o )  = lim,,,e'wZ"Mn, 'L(o) = lim,,,eiWz"'Mn, and the 
obvious notation '$ (U) .  
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For simplicity we have considered only strong limits of operators and excluded particular 
bases in which, for instance, zero is an eigenvalue of @(w), but @(U)  is not the zero operator 
on 3t; another instance we have excluded from OUT discussion is the case where U] and 
U0 do not commute but have a common eigenvector. Such cases reduce to the analysis on 
particular sub-spaces of 7-1 and ought to be handled separately; they are left to the interested 
reader. 

From relation (4) one sees that @(w) is non-zero if and only if '$(U) is non-zero and, 
in this case, L(w) and 'L (w)  are well defined. Notice that L(w) and 'L(w) are never zero 
since they are (strong) limits of unitary operators. 

Suppose that @(w)  is non-zero. Then from relation (4) one finds that 
L(w)'L(w)'L(o)L(w) = Z (identity operator). If we write out this relation we obtain 

z - 'L(o)L(o) = lim (eiwz"+' 'M n M n -  ) - ~i eiO2"+' M"+1 = U w ) .  n-m n+m 

In a similar way we find 'L(w) = I. Therefore, a necessw condition for a 6 function 
concentrated at w in the Fourier transform G is 

L ( 0 )  = ' L ( 0 )  = 1. (5) 

Notice that from relation (5) it follows that the presence of 6 functions in G implies that 
0 # $(w)  = '$(w).  We also have 

o = '~(0) - L(O) = lim e'"*"('M, - M,J 
n-m 

so that 

This last condition does not depend on w and seems to be non-generic. Next we discuss 
the case of 2-level systems. 

Now we check that for 2-level systems subject to kicks generated by the Thue-Morse 
substitution sequence condition (5) is not generic, so that its time evolution has, in general, 
no quasi-periodic component. The system is given by (1)  with HO = &uz, P = AuL, E, A E R 
and 7-1 = C2 -U= and U, are the standard Pauli matrices. 

The main ingredient here is the trace map, a fundamental tool for the study of tight- 
binding Schrodinger equation with disorder induced from substitution sequences [ 1,2,5,17]. 
Let x, = Trace(M,)/2; it was shown by Combescure [14] that for n 2 2 

x,+1 = 1 +4x,24(x" - 1) 

and the initial conditions have the form 

(6) 

X I  =cos(2E)COSh X 2 =  1 - ~ ~ ~ ~ * & ( I + C O S ~ A ( ~ - ~ C O S ~ & ) ) .  (7) 

Since M, are unitary 2 x 2 matrices it follows that x, E [ - I ,  I]. 
It was proven [14] that if x ,  = 1 for some n, then for any non-zero initial state the 

quantum autocorrelation measure of this 2-level system is the sum of a pure point and 
of a singular continuous measure. An open problem is to show if the condition x ,  = 1 
holds generically (in some particular sense, e.g., second category set or positive Lebesgue 
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Figure 1. 1000 p i i n  of consecutive iterates from h e  trace map (6) after the transient has been 
ruled out. The initial condition is given by (7) with E = 5,8933 and A = 3.669. These values 
of E and A were picked up at random. 

measure) in the parameter space. We claim that the condition x, = 1 is not generic; our 
argument is as follows. 

Set pn(w) = doZ"x,. If the Fourier tnnsform G has a 6 function at w it follows from 
(5) that p.(o) -+ 1 for n -+ W. From the trace map (6)  we get the recurrence relation for 
PI&) 

pn+l(o) - eimzM' =4p:-l(w)(p,(o) -eimZ"). 

The condition p,,(w) -+ 1 implies limn,,ei02" = 1, so that the o values in the interval 
[O. Znl are restricted to o j k  = %j/2', with j ,  k positive integers, j < 2'. In [14,15] the 6 
functions in the correlation measures were concentrated at frequencies of the form wjk; we 
have just shown that for 2-level systems these values of frequencies cover all possibilities. 

For n large enough p,,(ojk) = x n ,  and a necessary condition for the presence of a 6 
function in the Fourier transform is 

Iim x, = I 
n-ca 

This condition is equivalent to limn+mMa = limn+, 'M. = I 1141. Note that 
Combescure's results hold under the hypothesis M, = I for some n, and that the substitution 
rule implies that M, = 'M,? = I for any s > n. 

We have therefore arrived at the problem of characterizing the base of attraction, in the 
parameter space, of the fixed point C = 1 of the trace map (6) (with initial conditions (7)). 
Notice that the dynamics 

x,+* = 2x,2 - 1 (9) 
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is an 'invariant' of the trace map, i.e., if (9) is satisfied for the pair (x . ,xn+,)  then (6) 
implies that (xn+, , xn+2) also satisfies (9). The map (9) is a well known unimodal map 
on the interval [-I, I ]  that has a unique invariant measure p absolutely continuous with 
respect to Lebesgue measure [18]. Furthermore, p is an attractor [19] for (9) in the sence 
that the ergodic averages with initial condition concentrated on y E [-I, 11 converge to 
p for y in a set of full Lebesgue measure-in fact p is the unique attractor for (9). We 
have then a hint that p could also be an attractor for the trace map; we have checked this 
point numerically and have found that this is actually the case. In figure 1 we show the 
last 1000 iterates of the trace map from a total of 6000 with initial conditions (7) with 
E = 5.8933 and A = 3.669 (The numerical precision has to be controlled in order to avoid 
overflow of the &ace map iterates.). After a somewhat shorf transient the iterates of (6) 
converge to the corresponding iterates of (9). This has occurred for all pairs of parameters 
(E ,  A) we have checked. 

From the above results we conclude that p is an attractor for the trace map. Therefore, 
the set of points in the parameter space such that x. converges to the fixed point ( as n + CO 

is not generic, as well as the presence of a quasi-periodic component in the time evolution 
of the two level system corresponding to (I), Although our last argument is supported only 
by numerical calculations, these are simple enough to be considered very strong. 

This work was supported in part by Funda@o de Amparo B Pesquisa do Estado de S b  Paul0 
FAPIBP (Brazil) under contract 93/2853-5, that provided me with computing facilities. 

References 

Bovier A and Ghez I M 1993 Con" .  Moth. Phys. 158 45 
Kohmoto M, Kadanoff L F and Tang C 1983 Phys. Rev. Len. 50 1870 
Siita A 1989 I .  Star. Phys. 56 525 
Bellissard I, lochum B, Scoppola E and Testard D 1989 Commun. Math. Phys. 125 527 
Kohmotn M and Oono Y 1984 Phys. Lett. 102A 145 
Axel F and PeyriPre J 1989 J,  Sra. Phys. 57 1013 
Shechtman D, Blech I. Gratia D and Cahn I V 1984 Phys. Rev. Lett. 53 1951 
Quefihlec M I987 Substitution Dynamical Sysrems Spectral Analysis (Springer Lecture Notes in Mathematics 

Godrkhe C and Luck I-M 1990 J. Phys. A: Math. Gen.,W 3769 
Kolad M, lochum B and Raymond L 1993 J. Phys. A: Mark Gen. 26 7343 
Luck I-M, Orland H and Smilansky U I988 J. Star. Phys, 53 551 
Graham R 1989 Eumphys. Left. 8 717 
de Godoy N F and Graham R 1991 Eumphys. Lett. 16 519 
Combescure M 1991 J. Star. Phys. 62 779 
Combescun M 1992 Ann. Inst, H Poincard 57 67 
Bombieri E and Taylor I E 1986 1. Physique C3 19 
Kolar M and Non F 1990 P h p  Rev. B 42 1062 
Collet P and EFkmann I-P 1980 herored M a p  on the InferVal as Dynamicor System (Cambridge, M A  

de Oliveira C R 1988 J.  Star. Phys. 53 603 

1294) (Berlin: Springer) 

Birkhlusw) 


